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A shear-flow instability in a circular geometry 
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A circular shear zone is created in a thin layer of fluid. The Kelvin-Helmholtz 
instability induces regular, steady patterns of m vortices. The experimental conditions 
are such that neither the centrifugal nor the Coriolis forces play a role in the motion. 
The state of the flow is defined by a Reynolds number, the value of which is controlled 
by the imposed velocities. The pattern of vortices can be characterized by its 
wavevector k or by m, the order of its symmetry. As k is quantized, its evolution, 
due to an increase or a decrease of the controlled stress, leads to transitions between 
patterns of different m. The transitory states between different symmetries are 
investigated. The experiments are performed with a soap film which provides a new 
type of visualization of an air flow. 

1. Introduction 
In  this study, we present an experimental configuration where steady modes of the 

shear-flow instability are obtained in a circular geometry. 
The instability that affects a detached shear zone (known as the Kelvin-Helmholtz 

instability in the case of a discontinuous velocity field) has been widely studied 
recently (Winant & Browand 1974; Roshko 1976; and references therein). I n  the 
usual experimental set-up, a plane detached shear layer is created by bringing 
together two streams of fluids of different velocities. The end of a splitter plate, where 
the two fluids meet, marks the origin of the shear layer. The thickness of this layer 
increases with the distance; thus the Reynolds number based on the velocity 
difference and the mixing-layer thickness grows continuously with the downstream 
distance from the origin. The transverse velocity profile has an inflexion point so that 
there is a plane zone where vorticity is maximum. This plane is unstable, small 
disturbances near the 'origin grow into waves, then into a regular line of vortices, 
which, in turn, undergo pairing to give rise to large structures in the turbulent regime 
far from the origin. Spatial and temporal evolution have to be taken into account 
to describe the evolution of the flow. 

Less attention has been paid to the possibility of the Kelvin-Helmholtz instability 
leading to steady regimes in the case of a cylindrical detached shear zone. 

Regular patterns of peripheral vortices in a cylindrical case were first observed by 
Weske & Rankin (1963). They created a columnar vortex and observed that there 
was a region around the core where the presence of peripheral vorticity gave rise to 
a transient periodic concentration of vorticity . 

The problem of creating a permanent cylindrical shear layer is difficult as this layer 
must satisfy two conditions in order to be affected by the Kelvin-Helmholtz 
instability. The velocity profile should have an inflexion point and the flow should 
be two-dimensional in planes perpendicular to the rotation axis. As we will see, i t  
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is only if the second condition is satisfied that neither the centrifugal nor the Coriolis 
forces will affect the flow. 

The difficulty in meeting both conditions is illustrated in the following summary 
of the results obtained in two classical cylindrical geometrics. 

In the Couette configuration, a fluid is enclosed between two long coaxial cylinders 
rotating at different rates. The fluid is submitted to a shear constraint. But the 
boundary conditions on walls perpendicular to the velocity gradient create a velocity 
profile which does not have an inflexion point. The Kelvin-Helmholtz instability 
cannot appear. While the basic motion is two-dimensional, at the extremities of the 
cylinders there exists a three-dimensional flow where the centrifugal force becomes 
the destabilizing factor. A structure of piled-up tori then spreads from the ends into 
all the cell. This flow breaks down the translational invariance first, and only for 
stronger stresses will i t  break the continuous axial symmetry when the wavy modes 
appear. However, patterns of rollers with their axes parallel to the rotation axis were 
observed in the Couette geometry by Coles (1965). They corresponded to transitory 
states when sudden starts and stops of the rotation of the outer cylinder created an 
inflexion in the radial profile of the velocity. 

In  the geometry introduced by Hide & Titman (1967) a disk is placed in the centre 
of a cylindrical tank filled with fluid. The tank and the disk rotate respectively a t  
52, and SZ,( 1 + E )  around their common axis. When the mean rotation is high, a Taylor 
column, rotating a t  the mean velocity, develops on both sides of the disk. The 
Stewartson layer that separates this column from the rest of the fluid is a detached 
shear layer. Non-axisymmetric patterns of m waves were observed in planes 
perpendicular to the rotation axis above the plane of the disk. However, the difference 
between the instabilities observed for positive and negative values of the constraint 
E shows that i t  is not a simple Kelvin-Helmholtz instability. In  the observation 
planes, a vertical component of the velocity in the Stewartson layer is due to a general 
circulation in the cell. The Rossby and Ekmann numbers being very small and the 
flow being three-dimensional, the Coriolis force plays an important role in the 
amplification or the inhibition of the vortices. This experiment gave rise to theoretical 
calculations by Busse (1968) and Siegmann (1974). 

In  our experimental cell, the flow is induced by walls moving perpendicular to the 
rotation axis. In order to create a circular shear zone, the fluid is enclosed in a very 
short and broad cylinder, the top and bottom of which are both formed of disks of 
radius R, rotating at an angular velocity 52, surrounded by an annulus rotating a t  
52,. The thickness e of the cell is small, e < R,, so the friction on the walls drives the 
fluid into two concentric solid rotations with angular velocities 52, and SZ, separated 
by a shear zone with an inflexion in its velocity profile. For low values of the shear 
stress, an axisymmetric flow is stabilized by viscosity. The symmetry of the cell is 
such that the motion in its median plane can be considered as quasi-two-dimensional 
and is not affected by the three-dimensional recirculation that exists elsewhere. As 
the shear-zone width is maximum in this plane, the first instability is then a 
Kelvin-Helmholtz one which starts growing in that region. It produces in the circular 
zone a pattern of m, regularly spaced vortices that is characterized by its wavevector 
k,. This pattern is stable throughout a certain range of values of the stress. A further 
increase creates a situation where the mode is no longer stable. Global oscillations, 
with subharmonic spatial periodicity, will be observed before pairing of vortices, 
rolling around each other, leads to the coalescence of one or several pairs. The pattern 
then becomes a regular m,--p shape with a smaller wavevector. 

In  our experiment, in contrast with the linear case, the stress can also be reduced 
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and reverse transitions m’+m (m > m‘) are observed so that the complete range of 
stability of a given wave pattern can be explored. 

Finally, the patterns of vortices are observed using a visualization technique 
introduced in a preliminary work (Couder 1981). We insert a soap film in the median 
plane of the cell. Interference fringes produced in the film correspond to the flow lines. 
A discussion of this technique is given in the Appendix. 

2. The experimental apparatus 
2.1. The cell 

The fluid used in our experiment was air. The experimental cell (figure l a )  was a 
vertical cylinder of radius R, and height e Q R,, closed at the bottom and the top 
by circular plates, the central parts of which were independent disks each of radius 
R,. These disks were rotated a t  an angular velocity 0, while the rest of the cell was 
rotated a t  0, around the same axis. 

Figure 1 ( b )  shows a detailed drawing of the apparatus, the principle of which is 
sketched in figure 1 (a) .  For visualization of the flow, the top parts of the cell were 
made of Perspex. A cylindrical axis of radius R, passing through the cell fixed the 
top central disk to the bottom one. This axis did not disturb the flow insofar that 
there was a solid-body rotation of the fluid near the centre. 

Two superposed cylinders, each of height +e, composed the lateral vertical walls. 
The lower cylinder had a rim on which a horizontal soap film could be stretched before 
the beginning of the experiment. A small rim isolated the film from the central axis. 

The cell was designed in such a way that by changing some of its parts we could 
change the dimensions R, and e.  The following values were used in the present set 
of experiments : 

R, = 2.1 or 3.0 or 4.0 cm; 

e = 0.2 or 0.3 or 0.5 or 0.9 em; 

R, = 5.1 em and R, = 0.8 cm. 

The gap e between the rotating disks R, and the surrounding annuli was as small as 
practicable e - 0.01 em. 

The rotating parts of the apparatus were driven through two belt transmissions 
by two independent d.c. voltage-regulated motors with a typical range of frequencies 
0.2 Hz < f < 8 Hz and an uncertainty of 0.03 Hz. Both angular velocities could be 
linearly increased or decreased with accelerations ranging from 6 x Hz/s to 
0.2 Hz/s. 

Frequency measurements with chopped light beams provided excellent precision 
for the determination of the velocities. 

2.2. Visualization technique 

The flow in the cell was mainly observed from above. Photographs were taken, and 
a videotape recorder was also used to  analyse the rapid phenomena such as the 
transition between modes. Whenever a large value of the rotation velocity 0, of the 
pattern made its direct visual observation difficult, we used a rotoscope to get a 
stationary image. This was provided by means of a dove prism rotating at $2, around 
the axis of the system. 

We used two different visualization techniques, one based on the conventional 
smoke emission, and one using the interference fringes produced in a soap film. 
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FIQURE 1. The experimental apparatus. (a) Sketch of a section across the ideal cell. (b) The practical 
design of the cell, showing: (1) the lower central disk; (2) the lower external annulus; (3) the 
corresponding top parts made out of Perspex. The cylinders (4) have rims on which the soap film 
(represented by the dotted line) is stretched. The thickness of the cell can be chosen by changing 
the rings (5). (c )  General sketch showing the apparatus enclosed in a Perspex box with a 45' 
semireflecting mirror for normal illumination and observation. 

The smoke technique served two purposes: to check the result obtained with the 
film and to visualize the eventual three-dimensional structure of some flows. Droplets 
of ammonia solution and hydrochloric acid were deposited on the bottom of the cell 
before the beginning of the experiment. The rotation of the disk mixed the fumes 
and created a dense ammonium chloride smoke which was illuminated by a lateral 
white light source. The best visualization was obtained at the beginning of the 
emission of smoke when streak lines were clearly observed. 
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The soap jilrn 

A horizontal soap film could be stretched in the median plane of the cell before 
the beginning of the experiment. We used a 0.5 yo solution of a commercial liquid soap 
which was a mixture of sodium lauryl sulphate and sodium dodecyl benzene sulphate. 
An addition of 5 %  glycerol produced more-stable films. The experiments were 
performed in a humid atmosphere so as to minimize evaporation. In practice, the same 
film could be used more than 1 h before breaking or excessive thinning. 

An extended sodium light source lit the cell from above through a 45O semireflecting 
mirror (figure 1 c )  which permitted normal illumination and observation of the film. 

In the Appendix, we recall a few properties of the soap films along with a discussion 
of their role in the present experiment. The following conclusions can be drawn on 
how the film affects the motion and how it provides a visualization of the flow. 

The film is plane throughout the experiment, the curvature due to its weight is 
negligible and the capillary forces resist deformation. It is easily set into motion by 
air flows parallel to its surface and then behaves like a plane liquid with a kinematic 
viscosity v x 5 x lop2 St smaller than the viscosity of air. 

The air flow in the median plane of the cell is two-dimensional. The introduction 
of a soap film in that plane does not disturb the flow and only produces a slight 
decrease of the effective kinematic viscosity of the Auid contained in the cell. 

During the experiment, the film thins down constantly, though very slowly, by a 
drainage mechanism mainly due to local centrifugal forces. When illuminated with 
monochromatic light, the patterns of interference fringes corresponding to lines of 
equal thickness give a good visualization of the flow lines. 

3. General description of the experimental results 
We will describe the phenomena as they can be observed on a soap film. For low 

values of both rotation velocities Ql and a,, the central part of the film moves with 
solid-body rotation at Q, and the external part at  Q,, and a circular zone of shear 
stress separates the two areas. The action of centrifugal forces slowly thins down the 
film, and concentric circular fringes are observed. 

For a value AQ, of the velocity difference IQ,-52,1, an oscillation of the fringes 
located in the shear zone amplifies suddenly into a regular mode of m, vortices of 
elliptic shape (figures 2 and 3). In these zones, the rotation of the fluid of the liquid 
film creates elliptic fringes due to local centrifugation. The structure of m, vortices 
rotates as a whole at  an angular velocity that we will call Q,. 

The same experiment can be repeated, in the absence of a film, smoke being emitted 
near the gap between the central disk and the surrounding annulus. At about the 
same value of An,, the pattern of m, vortices appear. Each vortex has a vertical axis. 
The size of its transverse section is maximum in the median plane of the cell and 
decreases along the axis on both sides toward the slits. 

The values of AQ, depend on the radius R, and the thickness e ,  and will be discussed 
in $4.1, together with the selection rules for the value of m,. An interpretation of 
the existence and value of the threshold will be given in $4.2. 

The m, mode is stable through a range of values of AQ. Each vortex grows in size 
when the stress is increased until a point is reached where the mode is no longer stable. 
A transition to a new mode with symmetry rn’ (m’ < m,) will occur. Section 5 will be 
devoted to the description of the range of stability of the successive modes m, to the 
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FIQURE 2. Photograph of the interference fringes of the soap film, showing a mode m = 10 in the 
geometry R,  = 4 cm; e = 0.3 cm with SZ, = -3.7 rad/s clockwise, R, = 3.01 rad/s anticlockwise. 

shape of the vortices, and their velocity SZ,. The phenomena occurring during the 
transition from one mode to another will be specifically studied in $6. 

Finally, when the thickness e is not very small, and for large values of ASZ, two 
types of effect are observed : 

(i) For large values of Q,, three-dimensional structures appear which can be 
understood as the superposition to the Kelvin-Helmholtz vortical motions of two 
toroidal motions due to the centrifugal destabilization near the edges of the disks. 

(ii) For a small radius R, and a large e ( e  - R,) the vortices start interacting directly 
across the central zone. The saddle points that separate neighbouring vortices will 
migrate towards the centre of the cell. 

A qualitative description of these effects will be given in 4 7. 

4. The onset of the instability 

4.1.1. Criterion for the stability of the laminar flow 
The appearance of the pattern of vortices is abrupt. It can be observed by using 

either a soap film or smoke for visualization. With a film, the visualization is more 

4.1. Experimental results 
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FIGURE 3. Interference fringes showing a mode m = 8 in the geometry fi, = 4 cm; e = 0.3 cm 
with Q, = -7.95 rad/s, Q, = 6.02 rad/s. 

precise, each measurement has a precision of 0.2 rad/s but there is a drift of the 
observed values due to  the thinning of the film. Large shifts can be observed with 
different films. A correction would require a precise knowledge of the thickness of the 
film. The measurements that  we give are uncorrected but performed with very thin 
films. Even so, an uncertainty of 2rad/s  affects the results. With smoke the 
visualization is more difficult and the precision is 0.7 rad/s. Figure 5 shows the stable 
and unstable region of an (52,,52,)-diagram for R, = 3 ern and e = 0.3 em. The 
measured threshold does not depend on the mean rotation g(52, + 52,) but on 152, -all 
only. Table 1 (a )  gives the threshold values AQC in various geometries for several 
values of R, and e .  A logarithmic plot shows that A52, is inversely proportional to 
R, and e.  

We will show in $4.2 that the most-unstable region is the horizontal median plane 
of the cell. I n  this plane, the width of the zone submitted to the shear stress is of 
the order of magnitude of e.  The lengthscale is thus e ,  while the velocity scale is the 
difference in linear velocities (52, - 52,) R,. 

The Reynolds number is defined as 

Re = 
1522 - 5211 R, e 

1’ 
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FIQURE 4. A mode m = 4 (R, = 3 cm, e = 0.5 cm, 52, = -5.6 rad/s, 52, = 4.7 rad/s) as observed: 
(a) with a soap film; (b) with smoke. 
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FIQURE 5. Measured angular velocities at the onset of the instability in the 
geometry R, = 3 cm; e = 0.3 cm. 

R, (4 
A& (rad/s) 

2.1 3.0 4.0 

0.2 30.7 21.3 17.8 

0.3 20.7, 18.2 13.8, 10 

0.5 12.2, 10.7 8.2, 6.3 
e (cm) 

10.7, 7.5 

6.6. 6.3 

0.9 9.1, 9.4 5.6, 5 5.3, 5 

TABLE 1. Critical values of the angular-velocity difference as a function of radius and thickness 
of the cell. In each case the first number is obtained by observation of the smoke, the second with 
the film. 

where v is the kinematic viscosity of air. For the smaller values of e (0.2, 0.4 and 
0.5 em) a critical value Re, x 85 f 5 is found for the appearance of vortices observed 
with smoke. For e = 0.9 em, we find Re, x 110k 10. 

Observed with a film, the critical 652, are lower, but similar values of Re, will be 
found if a correction is applied to take into account the resultant viscosity of both 
fluids enclosed in the cell. 
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2.1 3.0 4.0 

mC -~ 
e (cm) 

0.3 6 8 11  
0.5 4 5 6 
0.9 2 or 3 3 5 

TABLE 2. Number of vortices at the threshold as a function of R, and e 

Owing to a lack of precision in the measurements of AQ,, i t  is difficult to know 
whether or not there is a hysteresis on the value of AQC for increasing and decreasing 
stresses, and thus to decide whether the bifurcation is subcritical or not. 

4.1.2. Selection of the wavevector 

The number of vortices m, in the pattern which appear a t  the threshold is well 
defined in a given geometry of the cell. It is independent of the presence of the soap 
film. The higher values of m, are found with a quasistatic increase in velocities. This 
‘rn, is proportional to R, and inversely proportional to e ,  as can be seen on table 2. 
Taking into account the fact that  quantization introduces maximum shifts of 0.5, 
a phenomenological law seems to  be 

R 
e 

m, x 0 . 8 5 1 .  

Introducing the wavelength A, and the wavevector k, of the critical pattern, we have 

A, 2xR, 22W 

e m,e A, 
x 7.5f 1 ,  k,e = ~ x 0.85+0.l. - -- - 

4.2. Interpretation 

The geometry of our cell is close to the ‘split-disk’ geometry studied theoretically 
by Stewartson (1957) and Moore & Saffmann (1969) and experimentally by Baker 
(1967). However, the experimental conditions are very different, since these previous 
works dealt with almost-rigid rotations where the slow relative motion of two disks 
rotating a t  52(1 +e) and 9 ( 1  +e’) was superimposed on a general rotation 52. Both 
Rossby and Ekmann numbers were small and the system was dominated by the 
Coriolis force (as also in Hide’s experiment). I n  our case, the relative velocity 52, -9, 
is generally large in comparison with the average velocity $(52,+52,). I n  addition, our 
cell has a small thickness e of the same order of magnitude as the sum of two Ekmann 
layers in our angular-velocity range : 

e - 2 -  
52’ 

Under these conditions, similar vortices are observed with a shear stress obtained by 
rotation of the inner disks only, or by rotation of the external annuli only, showing 
that centrifugal forces play no role in the initial destabilization of the laminar flow. 
Similarly, when 52, and 52, are both in the same direction, the whole system has a 
mean rotation i(52, + 52,). The vortices due to the shear stress will be in the ‘cyclonic ’ 
direction if 52, > SZ,, and could be amplified by Coriolis forces due to the mean 
rotation. If 52, < a,, they would be damped by these forces. This phenomenon is 

V 
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FIGURE 6. Geometry of the linear model. Oy is the mean streamwise velocity, Ox the 
direction of the mean velocity gradient. 

responsible for the different behaviour for positive and negative stresses in the 
experiment of Hide & Titmann.t In  order to characterize the importance of the 
Coriolis force, we define (following Hide) the Rossby number as 

We measured threshold values and observed vortices in the range 0.3 < R,. I n  this 
range, we did not observe a difference between the two directions. 

Thus the forces due to the rotations are not dominant. Since the cylindrical 
geometries seldom give rise to flows which can be described analytically, we will first 
find the basic flow that would exist in a linear geometry having similar boundary 
conditions obtained by 'unrolling' our cell. We will then study the stability of that  
flow. Comparison with the experimental results will give rise to a discussion on the 
conditions of validity of this model. 

4.3. The basic flow at low Reynolds number in a linear model 

Let us consider a fluid enclosed inside an infinite rectangular tube of width 2L and 
thickness e (figure 6) with L 9 e .  This tube is split along its length and the two U-shaped 
parts move in opposite directions a t  velocities + V, and - V, respectively. We will 
look for a laminar solution of the flow 

V ( U  = 0,  v(2, y, z ) ,  w = 0) .  

The continuity and Navier-Stokes equations are then 

t Experiments on von Karman streets (Chabert d'Hieres 1982) perforrnpd on a rotating ?abb 
in conditions creating a three-dimensional structure show a strong asymmetry between the vortices 
rotating in each direction. 
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-3 ~ 2 -1 0 1 2 3 
x l e  

t 

1 -1.0 -0.5 0 0.5 1 .o 
x le  

FIQURE 7. Velocity distribution of the laminar flow in the linear model. (a )  Variation of the velocity 
along Ox for three values of z. -, z = 0; --, z = f0.15e; -----, z = f0.45e. ( b )  Lines of equal 
velocities in the plane rOz  (with linear dimensions normalized to e ) .  

Taking into account that translational symmetry imposes applay = 0, the system 
reduces to Av = 0. 

The flow is symmetrical with reverse velocities on both sides of the plane x = 0. 
We will look for a solution on the x > 0 side, and impose the following boundary 
conditions : 

v = 0 

v =  V, ( z = k i e  or x = L ) .  

(x = O), 

The velocity field could be obtained by a Fourier expansion, but this would 

Let 
converge slowly due to the discontinuities in the boundary conditions. 

2 = (z+ix)e-'. 

In the limit L+ co, a conformal transformation (Kober 1957) transforms the surface 
between z = - t i e  and x > 0 into a half-plane limited by a straight line where we can 
solve Av = 0. 

Returning to the initial space, we find a velocity field 
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Figure 7 ( a )  shows several computed v(x) curves for different values of z. The map 
of equal values of v in theplane ZOX is shown on figure 7 ( b ) .  Changing e changes the 
scale of the sketch but does not change the velocity profile, which is also independent 
of the value of the viscosity. However, the width S(z)  of the shear zone is a nearly 

which has a maximum for 6(z  = 0) x e.  

4.4. The threshold of the instability 

The Kelvin-Helmholtz instability affects the interface separating two fluids in 
parallel motion with different velocities. The simple use of the Bernouilli theorem 
shows that a perturbation affecting the interface will be amplified by the resulting 
change in local pressures. In the present experiment, we must compare this effect to 
the stabilizing effect of viscous friction on the walls. 

The linear analysis of the Kelvin-Helmholtz instability, first given by Lord 
Rayleigh, can be found in Chandrasekhar (1961). We will use here the model in which 
the actual basic velocity profile is replaced by a linear variation of the velocity over 
a width 6 (figure 8a).  We will choose the tangent to the real profile in x = 0 and we 
will call 6(z) the width of the shear zone in a plane z (it depends quadratically on z) .  
In this plane, the growth rate of a perturbation (in the Ox direction) characterized 
by its wavevector k would then be 

which has a maximum (figure 8 b )  

v, 
U, = 0.4- for k&(z) = 0.8. 

This rate must be corrected. The basic flow is parallel to Oy. Any transverse 
component of the velocity, if created, is opposed by the friction on the horizontal 
walls (which is also responsible for variation of the shear width with z )  and decreases 
exponentially with a characteristic lifetime 7. It corresponds in a plane z to a damping 
factor l / r ( z )  which is the result of the friction on both walls of height z, = f i e .  Its 
order of magnitude is 

70 71 7z ( ( z - + e ) z + m ) .  

The instability that will create such transverse components of the velocity can only 
develop if its growth rate uc(z) is larger than 1/7(2): 

1 1 1  1 1 = -+-= v ~ 

where 6(z) is the width of the shear in the plane z :  

S(Z) x "("-.)(;+.). e 2  

This condition is easiest to satisfy in the median plane z = 0, which is thus the 
most-unstable region of the cell. There the instability starts growing for 
Re,  = 2&6(0)/v  x 40, its wavevector is k, x 0 . 8 / e .  The marginal stability curve is 
shown on figure 8 (c). 
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FIQURE 8. (a )  Velocity distribution in a plane z = Cte (----) and the modelling linear variation 
(-). ( b )  Growth rate g’ of a perturbation as a function of its wavevector kin the absence of friction 
on walls. ( c )  Marginal stability curve. 

4.5. Discussion and comparison with the experimental results 

A basic flow similar to the linear case would not be strictly a solution of the cylindrical 
Navier-Stokes equations. The velocity field cannot, then, be plane everywhere in the 
cell, and it is necessary to introduce components u, and u, to the velocity. No 
analytical solution can be found for this problem. 

The linear model suggests that a Kelvin-Helmholtz instability would start growing 
in the median plane of the cell. There, for symmetry reasons, we now have 

au,/az is not necessarily zero, but’ u, must be zero in the planes z = +Be and z = 0. 
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If e is small, uz is small everywhere and so is its derivative au,/az in the median plane. 
So an approximately two-dimensional motion is maintained in this region. 

More generally, a first approximation of the flow in the cell is obtained when R, 
is large and SZ, and Q2 small, by using the following correspondence with the linear 
model 

ru$(r, Z )  4+ V ( X ,  z), i 2 1  R ,  * - Vo, Q, R, * V,. 
In the linear geometry, we have given a qualitative treatment of the destabilization 

of the fluid planes z = zo treated independently. The pattern of vortices, as it appears 
experimentally, is characterized by a critical wavevector ( k ,  - 0.85/e) close to the 
predicted value in the median plane of the cell (0.80/e). It confirms that this is the 
region where the instability starts growing. 

The model predicts a lower limit for Re, corresponding to the plane z = 0:  
Re,(z = 0) = 40. The destabilization of planes z + 0 requires larger values of Re,. We 
observe Re, x 85. A quantitative treatment of the appearance of the wave in the whole 
cell, taking into account the x-dependence of its amplitude, remains to be done and 
would lead to better predictions. 

5. The vortex patterns 
5.1. Range of stability. Evolution of the wavevector 

The mode that appears at the onset will persist indefinitely if the velocities creating 
the shear constraint are maintained constant. If they are increased slowly, the size 
of each vortex will increase and the mode m, will stay regular in a certain range. Then 
a disturbance will break the m,-fold symmetry, leading to pairing of vortices and 
transition to a mode with m' < m,. 

The transitory phenomena will be described separately in $6. We will now study 
the selection of the modes and their range of stability. 

Figure 9 shows the evolution of m when the Reynolds number is increased from 
0 to 500, then decreased from 500 to 0 (in a geometry where R = 3 cm and e = 0.3 cm). 
When the increase is quasistatic, the observed transitions are successively 
m, +m, - 1, then m, - 1 + m, - 2. (The mode with the largest wavelength that can 
be reached in our geometry is m = 2.) During the decrease, the reverse phenomena 
will be observed with successive transitions m+m+ 1.  Strong hysteresis effects are 
found at each of these transitions. 

The total range of stability of a given mode (figure 10) will be bounded by the 
Reynolds value Remax a t  which a transition to m- 1 occurs during the increase and 
by Remin a t  which it will undergo a transition to m+ 1 during the decrease. 

In order to generalize these results, we compare the range of stability of a pattern 
of wavevector k (expressed in units l / e )  obtained for different values of R, and e .  
A plot (figure 10) of Remax and Remin for observed values of ke in two different 
geometries show the coherence of the results. Two empirical laws can be deduced from 
the results: ke Re-0.6f0.1 max , ke cc Re;k2'0.3. 

The marginal stability curve is also shown on figure 10 as obtained theoretically and 
fitted by replacing the predicted value Re, x 40 by the observed one Re, x 80. 

A t  present, no theory exists on the behaviour of the instability far from its 
threshold. However, the stability of linear chains of vortices has been investigated 
theoretically with model vortices of different types. A line of punctual vortices is 
always unstable and so is a line of vortices of the Stuart model (Pierrehumbert & 
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FIQURE 9. In the geometry R = 3 cm; e = 0.3 cm, the observed transitions between modes for a 
quasistatic increase of the Reynolds number from 0 to 500 followed by a decrease from 500 to 0. 
At the onset of the instability in D,, a mode m, = 8 shows up. The segments D, A,, D,  A, ,  etc. 
represent the total stability range of the modes m = 8 , 7 ,  etc. A rapid increase of Re permits direct 
transitions from m = 6 to ?gn = 3 (----). 

Widnall 1982). Moore & Saffman (1975) and Pierrehumbert & Widnall(l981) studied 
lines of Rankine vortices where the vorticity is constant in a core of elliptic shape, 
and zero elsewhere. The vortices can be defined by a geometrical factor which is the 
ratio of the width of the vortices to the wavelength. In  this model, under a threshold 
value of this ratio of 0.35 the chain is stable, and above this value pairings occur. 
Experimentally, we find stability between a maximum value of this ratio of 0.3 and 
a minimum value of 0.15. Local measurements of the velocity field would be necessary 
for a more precise comparison. 

5.2.  Angular velocity of the vortices 
In a linear shear zone, the vortices have a drift velocity which is the average 
$( V, + h). In our circular case, the angular velocity SZg can be easily measured using 
the rotoscope. We have investigated systematically SZg as a function of SZ, and SZ, 
and found a double linear dependence 

Figure 11 (a)  shows these dependences in the particular cases where SZ, or SZ, is zero. 
Different patterns have velocities which depend on m only. The measured values of 
the coefficients a,  and Prn are given on table 3. 

For each value of m, the coefficients satisfy a, +p, x 1. Their dependence on m 
shown on figure 11 is such that they would both, for infinite m, tend towards 0.5 
which is typical for the linear case. We will now show how the values of a, and Prn 
are related to geometrical factors. The vortices, in our experiment, do not have the 
perfect elliptic shape of the cat’s-eye model; the curvature of the shear zone makes 
the vortex more oblate on the inner side of the circle. Thus, two unequal lengths b, 
and b, define the distance from the core to the periphery of the vortex on the inner 
and outer sides respectively (figure 11 c ) .  This deformation is related to the ratio of 
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FIGURE 10. Maximum and minimum values of the Reynolds number for each observed wavevector 
expressed in l / e  units in two different geometries: 0,  R,  = 4 cm, e = 0.3 cm; X ,  R, = 3 cm, 
e = 0.3 cm. -----, predicted marginal stability curve; --- , homothetic curve fitting the 
observed value of Re,. 

the wavelength to the curvature radius h/Rl  = 211/m. As this depends on m only, so 
do a, and p,. 

In order to interpret these results, we will assume, as a first-order approximation, 
a linear variation of the velocity inside the vortex from the core to the periphery on 
each side (in the linear case, it would correspond to the Rankine model). We will define 
the angular velocities to be positive in the clockwise direction (figure l l c ) .  The 
peripheral angular velocities on each side of the vortices due to the driven rotations 
can be approximated on the inner side by B, - B, and on the outer side by -a, + B,. 
In the frame rotating at  Q,, the flux of fluid trapped in the vortex must be the same 
on each side of the core. For a thickness t we can write: 

so 

r 

b2 

r 
tlob'(~l-B,) (R,-bl)-dr bl = t (-B,+B,) (R,+b,)-ddr. 
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FIQURE 11. (a) Angular velocity of the vortices in three different patterns with m = 3, 5 and 7 as 
a function of 52, with 52, = 0 (top curves) and as a function of 52, with 52, = 0 (lower curves). 
R, = 3 cm; e = 0.3 cm. (b) The evolution of a, and 8, as a function of m. (c )  Shape of the vortices 
for large values of m and small values of m. 

m 3 4 5 6 7 8 

am 0.27 0.32 0.36 0.39 0.41 0.44 
Bm 0.74 0.7 0.65 0.63 0.59 0.58 
ah 0.27 0.33 0.38 0.40 0.43 0.44 
Pm 0.73 0.67 0.62 0.60 0.57 0.56 

TABLE 3. Measured values of the coefficients a, and /3, (the precision is 0.01) and corresponding 
values ah and P, predicted from the vortex shapes measured on photographs (the precision is 
0.02) 

The coefficients at, and & of O, and a, satisfy 

at,+& = 1. 

Measurements of the values of b,, b, and R, made on several photographs give values 
of ah and p, in good agreement with the experimental values (table 3). 



A shear-$ow instability in a circular geometry 309 

FIGURE 12. A regular m = 6 mode; R, = 3 cm, e = 0.3 cm, Jz, = -7.9 rad/s, Jz, = 5.6 rad/s. 

6. The transitions between modes 
The evolution of the wavevector with the Reynolds numbers imposes transitions 

between modes. In  this chapter, we describe the transitory phenomena in terms of 
symmetries. 

6.1. Transitions under an increasing constraint 
Two distinct phases characterize the transition from one mode to the other 
m-tm' (m' < m). 

The first phenomenon is the disappearance of the m-fold symmetry of the mode, 
and the formation of an intermediate state. This state is stable in a narrow range 
of values of the Reynolds number. Then, the transition itself will occur through the 
coalescence of one or several pairs of vortices. We will describe separately the 
transition process from initial modes with m of even and odd parity. 

6.1.1. Transition from a mode of even m 

of the vortices becomes modulated by a subharmonic wave of wavelength 2h : 
A pattern of even m will progressively lose its initial symmetry as the amplitude 

2nR, 
2h = - 

itm' 



FIQURE 13. A mode m = 6 modulated with subharmonic spatial periodicity before transition to 
m = 3. Same geometry as figure 14. 8, = - 11.3 rad/s clockwise, 8, = 7.1  rad/s anticlockwise. 

FIGURE 14. The appearance of the mode m = 3 after a transition from m = 6; 
8, = - 13.3 rad/s, SZ = 8.65 rad/s. 



A shear-jlow instability in a circular geometry 31 1 

The m-fold symmetry is replaced by a 4 p  symmetry. The pattern has a stationary 
form in time. This phenomenon was observed for m = 10, 8, 6, 4, and is shown on 
figure 12 and 13, for m = 6. In the narrow range in which this intermediate mode 
is stable, the amplitude of the modulation increases with the stress. The position of 
the core of a small vortex becomes unstable under the influence of the velocity field 
of the two neighbouring large ones. It could be displaced either both forward (in the 
direction of Q,) and radially inward near the preceding vortex, or both backward 
and outward near the following one. Experimentally, only the second situation is 
observed (figure 13). Then, two evolutions are possible. If the acceleration is large 
enough, &rn pairings occur, each small vortex being caught up by the following large 
one and absorbed in a rotation around it. 

The pattern then becomes a regular type (figure 13 and 14). If the acceleration 
is small, only one pairing occurs and the other vortices become equal in size again 
and a regular m -  1 mode is stabilized. 

6.1.2. Transition from a mode of odd m 
The visual observation in this case is more difficult. After the initial destabilization 

of the regular mode m, no geometrical symmetry is left in the intermediate state, and 
a general vacillation affects the amplitude of all the vortices (figure 15). However, 
a careful study of videotape recordings permits an analysis of the phenomenon which 
is similar form = 3,5 and 7. We will describe i t  in the rotating reference frame. During 
their vacillation, the vortices all go through amplitude and position oscillations. We 
will now number the vortices and take as the origin a vortex no. 1, which is smallest 
at time t = 0. A time T later, the vortex no. 3 will be smallest and the general pattern 
will be identical with what it was a t  t = 0 but tilted by an angle 8 = (2/m) ( 2 ~ ) .  At 
a time mr, the pattern will be identical with the initial state at t = 0. 

This behaviour can be understood if we remark that, in the case of odd m, the 
subharmonic wavelength 2~R,/+rn is not quantized around the circle and thus cannot 
be excited. The nearest quantized spatial period is A' = 2nR,/+(m+ 1). The observed 
patterns correspond to the basic mode m modulated by a wave of this wavelength 
A' with an angular velocity 

2n 
0 I =-- A'/& - 

mT m+(m+l)T 

in the direction of Q,. The direction is probably due to the type of displacement of 
a small vortex in interaction with its neighbours as described previously. A simulation 
shown on figure 16 gives the aspect of the amplitude modulation of the vortex line 
a t  times 0, 7 ,  ..., m7. 

The vortices are also longitudinally displaced by the oscillation but this has not 
been included in the model of figure 16. 

Ultimately, one pairing will usually take place and a transition to a mode m- 1 
will occur. 

The spatiotemporal structure of the modulated state for both parities of m can be 
described in another way. Rand (1982) gave a mathematical classification of the 
modulated waves in rotating fields. He introduced three numbers (m, s, n). m is the 
order of the symmetry of the basic wave, s the order of symmetry of the modulated 
pattern; if 7 is the minimum time for the pattern to  be identical with an initial state, 
it has then been shifted by an angle 8 = 2nn/m, which defines n. 

I n  this classification, when m is even we observe (m, &m, 0) ,  when m is odd (m, 1 ,2) .  
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FIGURE 15. A modulated m = 5 pattern; R,  = 3 cm, e = 0.3 cm, 
52, = -8.8 rad/s, 9, = 14.5 rad/s. 

6.2. Transitions under decreasing stress 

The return transitions m+m’ (m’ > m) have a very different form. With the decrease 
of the shear stress, the vortices retain length but become slimmer. Then, a slow elliptic 
motion affects their core along the shear zone. The frequency of this motion decreases 
with decreasing stress. When the dimensions are such that a ratio (b, + b,)/A - 0.15 
is reached, the vortex splits with the appearance of a second core (figure 17).  The 
phenomenon affects all the vortices, but a correlation between their oscillation was 
difficult to measure. The transitions m --f m + 1 correspond to Reynolds numbers close 
to each other (see figure 9). The decrease has to be very slow to produce transitions 
m+m+ 1, otherwise any transition from m+m+ 1 to m+2m can be observed. 

6.3. Transitions due to lateral friction 

When the external radius R, of the cell is not large enough compared with R,, a 
specific phenomenon is observed. If the previous evolution of the wavenumber has 
led to a mode m = 4, for instance, which we will suppose stationary in the laboratory 
frame, a further increase of the stress will make the transverse dimension b,  + b, of 
the vortices grow larger, and friction on the lateral wall becomes important. The mode 
is no longer stable, and all vortices split simultaneously into two. In  a transitory state, 
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FIGURE 16. (a) The near-subharmonic wave that modulates the vortices amplitide in the case m = 5. 
It is represented a t  all the times at which similar but tilted patterns are observed. (b) Unrolled 
model of the observed amplitude modulation of the vortices. 

eight little vortices will be present (figure 18), four of them moving forward and four 
backward. When they meet, they coalesce again into a m = 4 state identical with the 
initial one but tilted at an angle in. This state is itself transitory and will split again. 
These relaxation oscillations are regular and their period has a linear dependence with 
151, - OJ. The same phenomenon is observed if a central cylinder is introduced in the 
cell, creating friction on the inner side. 

7. Two limiting cases at large Reynolds numbers 
The study of the further evolution of the flow for larger Reynolds numbers is beyond 

the scope of the present article. Re depends on O,, O,, R, and e .  We will describe here 
two limiting cases where the structure of the flow changes. 

(i) A specific type of flow appears in the experiments where both e is large and 
151,l % (51,l. We have already noticed that the Re, value observed for e = 0.9 cm was 
abnormally large. Observation with smoke reveals a three-dimensional structure of 
the flow. The Ekman-layer thickness of the central disks becomes in this case much 
smaller than e .  Destabilization of the fluid by centrifugal action near the edges of 
the disks then creates two toroidal structures symmetrical with respect to the median 
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FIQURE 17 .  Splitting of vortices due to a decrease of the constraint. The initial mode was m = 3, 
successive splittings gave m = 6. Three different phases of the splitting can be seen on this 
photograph. The vortex at the top is elongated by the decrease of the stress. The vortex on the 
right is in the process of splitting. This splitting has already been completed on the left of the 
photograph. 

plane. The appearance of the vortices in the central plane creates spiral folds of the 
tori (figure 19a, b ) .  

(ii) Another phenomenon can be observed in the cells with a thickness e of the order 
of magnitude of the radius R,. There the vortices start interacting directly through 
the central region (provided the axis R, has been removed). Each vortex is then in 
the velocity field created by all the others. The saddle points that separate 
neighbouring vortices along the shear zone move towards the centre of the cell. Their 
meeting (in the case m = 3) is shown on figure 20. For a larger stress they cross the 
central area and move towards the opposite side of the cell. 

This evolution of the pattern has a remarkable analogy with the evolution of the 
PoincarQ sections of HQnon's attractor (1969) when the control parameter is changed. 
It seems that this analogy of forms in two totally different spaces has a topological 
origin. In the HQnon attractor, when the system is Hamiltonian, the section is an 
area-preserving mapping. We have motions with div 11 = 0 in two dimensions; the two 
conditions are similar and seem to lead to archetypal shapes. 
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FIGURE 18. Oscillation between a mode m = 4 and a mode m = 8 due to friction on the lateral wall; 
R, = 4 cm, R, = 5.1 cm, e = 0.9 cm, a, = -14.8 rad/s, Q, = 4 rad/s. 

8. Concluding remarks 
I n  summary, the results show that i t  is possible, if the previously discussed 

conditions are met, to obtain steady states of the shear flow instability in a circular 
geometry. The state of the flow is defined by a Reynolds number which compares 
the destabilizing effect of the shear stress with the damping due to  viscous friction 
on the walls. This Reynolds number can thus be controlled by the externally imposed 

11 F L M  136 
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FIGURE 19. (a) Photograph of the three-dimensional structures observed with smoke when e is large 
and iQ,l + lQ21. At the bottom a sketch of the position of the tori. (6) The top of the cell has been 
removed. The three-dimensional structure is observed with smoke underneath a membrane. At the 
bottom is a sketch of the position of the torus. 

velocities so that it can be, at will, increased or decreased. This possibility should 
be useful to the understanding of the evolution of the usual linear detached shear 
layers where both temporal and spatial growth of the instability are spontaneously 
present. 

The types of vortices we obtained have a particular structure with a short length 
along their axis and a rapidly varying section with maximum surface in the median 
plane between the walls. A qualitative treatment of the Kelvin-Helmholtz instability 
provides an understanding of the appearance of the instability ; however, a complete 
quantitative treatment of the flow taking into account its structure along the axis 
remains to be done. 

We are particularly grateful to H. Thome who designed the experimental cell, to 
J. Brochard who constructed i t ,  and to C. Basdevant, S. Fauve, C. Guthmann, 
B. Julia, B. Legras, A. Libchaber, J. Maurer, B. Perrin and Y. Pomeau with whom 
we had many discussions about various aspects of the experiment. 

Appendix. Visualization of an air flow by means of a soap film 
We will examine here the kind of boundary conditions that a liquid soap film 

imposes on the neighbouring air and the types of visualization of the flow that it can 
provide. 

In  our experiment, the film is stretched horizontally, its thickness is 
0.2 pm < t < 2 pm so its mass per unit surface is small and the curvature due to its 
weight negligible. 
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FIGURE 20. Three interacting vortices in a cell with e - R,  and sketch of the 
displacement of the saddle points. 

Trapeznikov (1957) showed that a liquid-film viscosity could be written 

PS 
Pf = Pb++ 

where pb is the bulk viscosity of the fluid and ps the surface viscosity of the superfir la1 
layers. With the type of soap solution we used we foundpL, % 6 x P for films 2 pm 

11-2 
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thick corresponding to &,us x 5 x lop6 surface P. In  its motion parallel to the film, the 
air exerts friction on large surfaces. This force is only resisted by the viscous forces 
in the thin section of the film. In  all our experiments, the lengthscale L of the 
horizontal velocity variation near the film is such that 

L2p,ir D Ltp, * L 9 2 x 102t. 

In  these conditions, the film is easily set into motion and follows exactly an air flow 
parallel to its surface. 

If the air flow that interacts with the film is three-dimensional, the relation between 
its motion and the film motion will be complicated. The strong capillary forces will 
oppose any deformation of the plane and impose a v1 = 0 condition on its surface. 
The film is dragged by the air in the zones where the driving parallel velocity of the 
flow is the largest. Elsewhere, return currents appear in the film so as to maintain 
a divergence-free flow in its plane. The correspondence between the air flow and the 
observed motion of the film requires careful interpretation. (There is a similar 
problem in the relation between a three-dimensional flow in a liquid and the observed 
motions of a polluting layer on its free surfaces.) 

If the air flow is two-dimensional and parallel to its surface, the film will follow 
its motion and provide several types of visualization. 

(i) It is possible to observe the motion of suspended micelles on the film and thus 
to obtain the path of the particles. 

(ii) The film, after its initial stretching, contains many patches of different 
thickness. These patches, when drawn into motion, get elongated and show the 
flowlines. 

(iii) In  the present experiment, the visualization is related to the drainage of the 
film due to its motion. It can be understood by comparison with the drainage of the 
soap films under the influence of gravity which was extensively studied by Mysels, 
Shinoda & Frenkel (1959). When a film is stretched on a vertical frame, after a few 
seconds a pattern of horizontal fringes alternately light and dark are observed in 
monochromatic light. They correspond to a continuous gradient of increasing 
thickness from the top to the bottom of the frame. Observation shows that a very 
slow drift of the fringes is due to the drainage of the film. 

Mysels studied this phenomenon and classified three types of films with different 
drainage behaviour. Our films correspond to his mobile type. He showed that for these 
films marginal regeneration (suction of the film by the Plateau border) determines 
the rate of the thinning in rectangular frames. In the absence of this phenomenon 
(cylindrical films) the thinning is extremely slow because the motion due to the 
gravity forces is opposed by the internal viscous forces. During this drainage, the 
fringes are lines perpendicular to the driving gravity force. 

In  our system, we stretch a film on a horizontal circular frame. A rotation of the 
whole system will create in the film a series of concentric circular fringes corresponding 
to the thinning of the centre due to centrifugation. In  the absence of marginal 
regeneration, the process of thinning is very slow. 

When a non-axisymmetric flow appears, the drainage is due to the local centrifugal 
action eventually corrected by a Coriolis term. The centres of the vortices thin down 
and elliptical concentric fringes appear. 

Finally, the drainage does not affect in return the general motion because of the 
difference in their velocity scales. While the imposed velocity field is of the order of 
se -era1 centimetres per second, the drainage has velocities three orders of magnitude 
smaller. 
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